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Variable Object Study 
(Temporal Astronomy) 

• Changes in magnitude or position on human timescales 

– seconds to centuries 

– principal tool is differential photometry 

• Dynamic celestial phenomena 

– Variable stars, eclipsing binaries 

– Supernovae 

– Active Galactic Nuclei (AGN) 

– Moving solar system bodies (comets, asteroids, moons, minor planets) 

– Exo-planet transits 

– Proper motion 

– Outburst events (GRB, star forming regions, …) 
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Image Subtraction 
Discovery and analysis that goes beyond blinking and aperture photometry 
– Pixel-by-pixel subtraction 

– Differential photometry on an entire image 

– Finds localized changes in magnitude 

– Identifies and characterizes moving and fixed position variables targets 

Subtraction on right shows progress of a light echo from an earlier nova in the star field on the left 

Miller, Pennypacker, & White, 2008, PASP                 Source images: Astronomical Research Institute 
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Convolved Image Subtraction 
Find a transfer function that redistributes the flux point spread function (PSF) 

to match, with no change in net flux for a target object. Kernel K convolved 

with image R matches image I when no variable objects are present: 

 

 

 

The difference image D then characterizes all variable objects: 

 

 

 

 

Challenge: produce the best possible kernel. 

R K I 

 R K I D  
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Optimal Image Subtraction (OIS) 

• Assume a basis function 
– Alard (ApJ 1998, A&A 1999,2000) uses a Gaussian basis in the original implementations 

– Miller (PASP 2008) introduced optional Dirac delta function basis (better asymmetric fit) 

• Kernel formed by a superposition of scaled basis 

functions 

 

 

• Solve the kernel by a least-squares fit until PSF 

in                  across a large number of sampled 

non-variable image locations 

R K I 

 ,n ii
i

K a x y B   
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In Pan-STARRS and LSST nearly all of the images will be differenced at least once. 

The Rising Data Torrent 
170 GB 30 TB 

PS1  1-1.5 TB  

PS4  4-6 TB  

Image data per night of operation 
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Image source: Institute for Astronomy, University of Hawai`i, Photograph by Rob Ratkowski for the PS1SC 

Image source: SDSS 

and the Astrophysical 

Research Consortium 
Image source: LSST Corporation,  

Image credit: J. Andrew, NOAO/LSST 



OIS – computation requirements 

– As exemplified by Pan-STARRS, 1.4 Gpx mosaic camera 

• Using Miller-Buie OIS IDL code  

– Miller’s IDL OIS optimized by Buie (and his Harvey Mudd team) 

• 2nd order space-varying kernel fit for a single tile 4800x4800 pixels 

– ~3 TFLOP/subtraction for a tile image pair 

– ~100 sec on a modern high-performance PC under IDL  

» Operating at ~30 GFLOPS  

• 60 tiles in a Pan-STARRS image [PS1 takes ~1 image/2 min] 

– ~180 TFLOP/subtraction for a complete image pair 

– ~6000 sec (1.67 hrs) on the same high performance PC as above 
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Computation Time by Operation 
(Miller-Buie IDL OIS, Constant Gaussian Kernel) 
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Convolution Load 
Convolution is the major processing load in OIS. Hundreds to  hundreds of 

thousands of small convolutions for determining the kernel based on small 

sample regions (P in number). The kernel is developed as a superposition of 

basis functions determined by a least-squares fit: 

 

 

 

 

Where a perfect kernel is found when  

 

Plus the time for the convolution in the final full difference image D: 
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Amdahl’s Law Scaled By Problem Size 
Amdahl’s speedup function is most meaningful for a fixed 

problem size. If we apply it to execution time: 

 

 
Where t is the time of execution. Time is the real challenge we must address, not S. 

But the problem size is growing.  

 

 

 

Where f(x,P,N) is the effective problem increase as a function of image size in pixels x; 

g(x) and h(x) are the serial and parallel affected execution scaling functions 

respectively which increase proportional to x. 

• When possible, reformulating the code so that g(x) is constant is the ideal case 
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GPULib for IDL 
• Commercial Product 

– High-level-language (HLL) implementation GPU API 

– Free for academic use 

– HLL frontend for CUDA, requires CUDA and NVIDIA hardware 

• IDL code must be modified for GPULib calls 
– GPU variables (explicitly or implicitly declared) are required for GPU operations 

– GPULib library is a small subset of IDL, complex IDL cannot be replaced one-for-one 

– Limited dimensionality in many functions, call parameters different in some cases 

– Code must be applicable to a SIMD paradigm (same serial to GPU parallel challenge as everywhere else) 

– Operator overloading for IDL v8.0 (a nice feature) 

• Every function call is a new CUDA kernel 
– Memory transfer and kernel initiation overhead apply 

– Problem must be stated in a way that minimizes function calls or overhead swamps out gains 

• Implicit (hidden) GPU memory allocations must be managed in some cases 
– GPU memory resources can be consumed rapidly by some calling methods 

– A CPU variable can be morphed into a GPU variable if needed by a GPULib function (allocating GPU global memory) 

– Implicit variables may need to be freed manually to recover memory, especially when working with large arrays 
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GPULib vs CPU Convolution Time 
(Constant Gaussian Kernel) 
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Conclusions 
• OIS is well suited for improvement by a GPU solution 

• Growth in time of execution is dominated by code that can be 

parallelized effectively 

• GPULib can achieve a 10x-20x gain for OIS on larger images 
– But probably not much more without heroics 

– Further gains are best approached in a native GPU development environment 

• In general, characterizing Amdahl's Law in terms of time that 

scales by problem size for the problem at hand can provide 

insight into practical optimizations, and limits of optimization 

with respect to problem size increases 
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Questions? 

Thank you, 
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